LU-24-027 IN-PERSON TESTIMONY SUBMITTAL COVER SHEET

Received From: Eliza Murphy

Date: 10.29.25 3:40 pm

Email: M. eliza. murphy @ émail.com

Phone: 541 913 4691

Address:3 610 Glenfiddich Waz

City, State, Zip: Everne UR 97405

FOR BOC OFFICE STAFF USE ONLY

BOCID: BOC3

IDENTIFIER: TO718

Eliza Murphy 31610 Glenfiddich Way Eugene, OR 97405 m.eliza.murphy@gmail.com

October 29, 2025

To: Benton County Board of Commissioners

Re: LU-24-027, Coffin Butte Landfill Expansion Conditional Use Permit

Application

Hello Commissioners,

I write to urge you to uphold the unanimous decision made by the Benton County Planning Commission to deny Republic Services' conditional use permit.

Litter, specifically plastics pollution, poses a significant impact on existing uses on property adjacent to Coffin Butte Landfill.

Windblown plastics leaving the dump travels to local pastures where cows graze. The keepers of the cows and cattle who accidentally ingest indigestible plastics carry an undue burden of conducting their own litter patrol in an effort to prevent animals from eating litter from the dump.

Plastics pollution is a serious threat to land-based animals. Macro plastics are visible and time-consuming for dump-adjacent property owners to remove to prevent their animals from eating pieces of plastics. Sick animals or animals who

have cannot reproduce equals more than the expense of vet bills and loss of income, but the damages cause significant emotional impacts.

Nearby neighbors have documented plastic packages carried over the trees south of the dump by the wind.

plastics

When animals ingest plastics, the release toxic synthetic chemicals in the rumen. These foreign substances that get blown to adjacent properties and swallowed by animals living on adjacent properties are known to cause reproductive harm.

Landfills are also a source of airborne microplastics and nanoplastics that property owners cannot see nor detect, therefore they cannot protect their animals from the risks these miniscule fragments, films and fibers pose to livestock. Particles the dump cannot contain due to the tendency of macroplastics breaking into smaller and smaller particles known to travel great distances.

Poorly managed landfills, like Coffin Butte, are a significant source of atmospheric and airborne deposition of micro and nano, or "invisible" plastics.

"The risk posed by microplastics and nanoplastics to humans and animals is physical, chemical and microbiological." (see attached: *Impact of Microplastics and Nanoplastics on Livestock Health: An Emerging Risk for Reproductive Efficiency*)

Seeing litter along roads leading to the dump is common and not all of it stays put to get buried in mud or ground to bits by traffic. Bits that the wind picks up to deposit on adjacent agricultural land, putting animals at risk of health impacts from

ingestion and inhalation. It is not uncommon for chip bags, plastic films, tiny fibers shed by clothing and carpeting, and other ubiquitous municipal waste to litter roadsides by Republic Services' garbage trucks headed to the dump. Plastics do not biodegrade, they break into smaller pieces when exposed to pressure, ultraviolet rays from the sun, and heat.

Airborne and atmospheric "invisible" plastics inhaled by cows and cattle cause harm. Contaminated air directly impacts respiratory systems, with a high risk of nano plastics entering the blood stream, causing inflammation, cell damage, and immunotoxicity. The toxic impacts are interconnected and disturbance in one system risks triggering a cascade of other toxicologic responses. (please refer to attached study)

Plastics litter poses a significant impact on the health of farm animals on adjacent properties. Plastics litter blown onto adjacent properties seriously interferes with adjacent land uses.

Lived experience of people whose property is adjacent to the landfill proves that litter from the dump operations causes significant impacts and seriously interferes with adjacent land uses.

McKenna Bradley, a teenager who raises cows to help fund her future education, routinely removes plastic trash from the family's cow pastures. Paisley and Potato, the two cows she is raising, can no longer roam the pastures due to the litter. Instead, they're kept in a barn and Mckenna has to walk them daily.

Another adjacent property owner got to her cow as its jaws started chewing on a plastic bag filled with trash.

Both adjacent property owners are experiencing significant impacts from VISIBLE plastics blowing from the dump operation. Both adjacent property owners are contending with serious interference with the uses of their land due to VISIBLE litter carried by the wind to their property they must remove before a cow finds it.

No adjacent property owner with livestock, or pets, can quantify the significant impacts on the health of their animals from the INVISIBLE pollution originating at Republic Services' dump, a dump notorious for its violation of state and federal regulations as other community members have testified.

Plastics litter from landfills pose a threat to public health and the environment.

These hazardous substances have so far escaped regulatory agencies, but they are causing significant impacts on adjacent land use.

Without a voice of their own, I am compelled to include the significant impacts and serious interference dump litter has on wild animals known to frequent adjacent property. Wildlife (Bald Eagles, Ravens, Seagulls, and rodents) who scavenge at the open dump during hours the dump is closed but insufficiently covered are at risk of harm from plastics littering uncovered areas of the working face, as well as ditches and fields adjacent to the dump. Wild elk who live nearby and migrate through adjacent property, and on Coffin Butte Road risk swallowing or inhaling litter from the dump and the trucks. Blue herons who nest and raise young on property adjacent to the dump are also subjected to health risks from litter and its toxic pollutants from the dump and the garbage truck traffic.

Expanding the dump will increase the volume of plastics pollution, along with an increase in the 16,000 synthetic chemicals used in making plastics.

More litter will worsen the existing significant impacts on adjacent uses. Since Republic Services cannot devise mitigation capable of containing its litter, allowing this expansion will cause even more significant impacts on adjacent land use than already exists.

I urge Commissioners to uphold the Planning Commission's denial of Republic Services' expansion application.

https://pmc.ncbi.nlm.nih.gov/articles/PMC10093235/ https://www.plasticpollutioncoalition.org/blog/2016/8/9/plastic-pollution-is-killing-indias-sacred-cows

SIGN UP

DONATE

LEARN TAKE ACTION OUR COALITION PROJECTS ABOUT

By Chaitra Cheruku

I grew up in the city of Hyderabad in southern India, one of the fastest-growing regions in the world. My favorite memories are of my yearly visits to my village in the remote area of Karimnagar, a small district in the state of Telangana, to celebrate its myriad festivals. I cherish each of these, but the most memorable is the harvest festival of *Sankranti*. Celebrating the first harvest of the year, we pray and we thank nature.

This festival is celebrated for three days, and the last day is dedicated to the cattle that play a major role in the lives of farmers. Waking up early in the morning and offering our prayers to the cattle was how our day started The cow and bull are considered sacred for Hindus; they represent the symbol of dharma (the eternal law of the cosmos).



Cattle also represent prosperity and abundance in the Indian community. They are the farmers' backbone. They substitute for human or mechanical labor on the farms, provide nourishing milk, their dung is used as fuel, and their urine is a powerful organic pesticide. So it is not strange that we worship them, and slaughtering them is considered a moral and legal crime.

Today in this changing world, their neglect is almost astonishing. Globalization has forced farmers to give up on traditional farming practices, and the prominence of these animals has diminished. The festivities moved to the cities, and idols of the animals replaced the actual ones, to be more convenient for people. But things changed so gradually that no one noticed when they started following just the rituals without their actual purpose. Now, these animals are left on the roads to fend for themselves.

The open garbage system in India is a huge menace to the well-being of stray animals. I have seen stray cows and bulls on the roads, chewing on something from the open garbage bins and looking for anything edible to survive. My uncle was even in an accident when his car struck one of these stray cows, a common occurrence.

The plight of these animals has become a major concern to society. They are discarded, and then people discard waste in plastic bags, and the animals searching for food consume the plastic, along with the leftover food materials. The plastic gets accumulated in their rumens and becomes hard. These animals look healthy, but that is just an illusion — they often die a slow and a painful death due to starvation.

 $India's\ cows\ are\ extremely\ threatened\ by\ plastic\ pollution\ --\ but\ they\ are\ not\ the\ only\ ones.$

India's cows are extremely threatened by plastic pollution — but they are not the only ones.

India's cows are extremely threatened by plastic pollution — but they are not the only ones.

India's cows are extremely threatened by plastic pollution — but they are not the only ones.

India's cows are extremely threatened by plastic pollution — but they are not the only ones.

Occupy for Animals, and Help Animals India (a PPC member organization), both work to raise awareness about the violence against and neglect of these animals. A thought-provoking article on the 5 Gyres blog introduced me to The Plastic Cow Project. They work with multiple strategies to fight for the rights of animals. I was dismayed by the facts mentioned in their particular report. I learned Hindu temples often harbor elephants to perform ceremonial events for deities. These animals are neglected too, and feed on the plastic waste discarded outside the temple. Recently an elephant was found dead, with 750 kg of plastic inside its stomach, according to The Plastic Cow Project.

Related: Plastic Kills... Just Ask the Cows

It is appalling that such incidents are not met with a sense of urgency as they should be. These events, though brought into the public eye, are often ignored.

I believe this apathy to the suffering of the once-revered animals is due to the lack of awareness among people regarding proper plastic disposal systems. The total plastic waste that is collected and recycled is estimated to be 9205 tonnes per day; 6137 tonnes remained uncollected and littered in 2015, according to a <u>report</u> by the environment ministry.

These numbers depict the huge amount of plastic waste generated, and the lack of knowledge among people about trying to recycle it. During my middle school, I was introduced to the <u>National Green Corps</u> (NGC), a government initiative to promote awareness about environmental issues. As an NGC cadet, I participated in several awareness campaigns about waste management. The awareness campaigns about plastic disposal are often neglected by the masses as it is considered a First World problem. People argue that there are much more serious issues to be tackled, like poverty, food scarcity, illiteracy and economic stability, in developing nations. But it is important that people understand the relationship between these issues and plastic waste, and how it will affect generations to come.

The government of India has banned plastic carry bags below 50 microns, and has come up with stringent waste-responsibility laws in the new <u>plastic waste management rules</u>. This has resulted in stores charging extra money for plastic carry bags in order to encourage customers to bring their own shopping bags. However, these measures haven't resulted in the significant impact that India really needs.

The real change can only be brought about when consumers are made aware of the amount of plastic entering the environment every day and how their refusal to buy or use plastic products is the ultimate solution. A new law to govern the handling of electronic waste by bringing the producers of electronic goods under "extended producer responsibility" sounds promising. However, the law should be imposed on not just electronic companies, but companies producing plastic carry bags, water bottles and any single-use plastic products. This will ensure that there is a proper take-back mechanism and that the waste is reduced considerably.

Help the cows of India: <u>Help Animals India</u> | <u>The Plastic Cow Project</u> | <u>Karuna Society for Animals and Nature</u> | <u>Occupy Animals India</u> | <u>People For Cattle in India</u>

I have seen my country in its simplest form, connected with nature and treating all living creatures as sacred beings. It affects me profoundly to see the changes that plastic waste has brought, and it goes against all the beliefs I grew up with. We lived a better life before the advent of plastic, and I believe we still can give up plastic and try to restore the past glory of these animals.

They have sacrificed their lives for our well-being, and it is only fair that we do our part in saving them.

Chaitra Cheruku is a graduate student in engineering management at Duke University, was a founding member of Bachpan Bachao in India, which helps children in need get an education, and a summer intern at Plastic Pollution Coalition.

Top photo: Sharath via Foter / CC BY-NC-SA

SHARE

Likes

16 responses to "Plastic Pollution Is Killing India's Sacred Cows"

As a library, NLM provides access to scientific literature. Inclusion in an NLM database does not imply endorsement of, or agreement with, the contents by NLM or the National Institutes of Health.

Learn more: PMC Disclaimer | PMC Copyright Notice

Animals (Basel). 2023 Mar 23;13(7):1132. doi: 10.3390/ani13071132

Impact of Microplastics and Nanoplastics on Livestock Health: An Emerging Risk for Reproductive Efficiency

Susy Urli ¹, Francesca Corte Pause ¹, Martina Crociati ^{2,3,*}, Anja Baufeld ⁴, Maurizio Monaci ^{2,3}, Giuseppe Stradaioli ^{1,*}

Editors: Filippo Giarratana, Luca Nalbone

Author information Article notes Copyright and License information PMCID: PMC10093235 PMID: 37048387

Abstract

Simple Summary

Due to its multiple properties, such as stability, hardness and economic prices, the application of plastics has gradually increased, becoming essential in every industry. Since 1950, the worldwide plastic distribution has progressively created a serious pollution

issue caused by difficulties in proper recycling, which has led to the presence of plastic fragments, called microplastics and nanoplastics (MPs/NPs), in the environment. The majority of the research has focused on the aquatic pollution, while studies regarding soil contamination are still poor, with the necessity to better understand how MPs/NPs can enter the food chain and reach humans passing through both crops and animals. Therefore, there is a need for evaluation, and the present work will provide an overview of the sources and distribution of MPs/NPs in farms; different mammalian exposure (digestion, inhalation and dermal contact) and associated risks and health problems caused by these fragments. In particular, this review aims to provide information on the effects, mainly from additives (such as Bisphenol A-BPA), on livestock reproduction and fertility.

Abstract

Pollution due to microplastics and nanoplastics is one of the major environmental issues of the last decade and represents a growing threat to human and animal health. In aquatic species, there is a large amount of information regarding the perturbation of marine organisms; instead, there are only a few studies focusing on the pathophysiological consequences of an acute and chronic exposure to micro- and nanoplastics in mammalian systems, especially on the reproductive system. There are several studies that have described the damage caused by plastic particles, including oxidative stress, apoptosis, inflammatory response, dysregulation of the endocrine system and accumulation in various organs. In addition to this, microplastics have recently been found to influence the evolution of microbial communities and increase the gene exchange, including antibiotic and metal resistance genes. Special attention must be paid to farm animals, because they produce food such as milk, eggs and meat, with the consequent risk of biological amplification along the food chain. The results of several studies indicate that there is an accumulation of microplastics and nanoplastics in human and animal tissues, with several negative effects, but all the effects in the body have not been ascertained, especially considering the longterm consequences. This review provides an overview of the possible adverse effects of the exposure of livestock to micro- and nanoplastics and assesses the potential risks for the disruption of reproductive physiological functions.

Keywords: microplastics, nanoplastics, reproductive system, health, bovine, cow, cattle, BPA, granulosa cells, steroid hormone

1. Introduction

Plastics have been widely used in production and life ever since their invention due to their remarkable properties of durability, lightness, stability and low cost. Plastic products have revolutionized our social life to such an extent that experts speak about the "Plastic Age" [1] or "Plasticene" [2]. The production of plastic per year has increased tremendously, as the global plastic production reached 390 million tons in 2021 compared to only 2 million tons produced in 1950 [3]. The demand for plastics in Europe reached 50.7 million tons, with Germany in the lead (24.2%) and Italy in second (13.8%). One of the largest end use markets is the packaging and building/construction industries. Interestingly, both sectors have the most different product life cycles [4]. While plastics in the building and construction sector are functional for 35 years, some plastics, especially in the packaging industry, might have very short lifetimes of 6 months or are single-use only, thus contributing to the immense waste management issue. It is noteworthy that the COVID-19 pandemic has increased the plastic use and environmental contamination by plastic as a result of the common use of masks, gloves and other plastic consumables. This has enormous effects on daily life not only regarding humans but also other animals. The physicochemical characteristics and the mechanical and technological properties of plastics have led to an increased worldwide distribution. The main characteristics of plastics are hardness, resistance to stress and impact, elasticity, machinability

and economical cost. Plastic is a macromolecular material composed of polymers of different lengths. The most common compounds used to make plastics are polyethylene (PE), polypropylene (PP), polystyrene (PS), polyethylene terephthalate (PET) and polyvinyl chloride (PVC). Furthermore, various additives such as plasticizers, flame retardants, stabilizers, colorants, antistatic agents, lubricants, slip agents, curing agents, foaming agents and biocides are used to enhance their performance [5]. The results from several studies indicated that these additives pose a greater risk to physiological functions than plastics. Commonly used additives are phthalate esters and bisphenol A (BPA). Phthalate esters serve to make PVC more flexible and softer [6], and BPA is used because of its translucent property, to increase the mechanical and thermal resistance [7]. In general, plastic particles can be divided into two categories: primary particles, which are intentionally produced by the industry for various purposes (pellets used to make plastic products, abrasive microbeads or personal health care products), while secondary particles are generated when there is the disintegration or abrasion of materials or waste released into the environment (washing synthetic clothes, tire abrasion, etc.) [8]. The exposure of plastic waste to physical, mechanical, chemical and biological processes such as fragmentation, weathering, hydrolysis, UV radiation and biodegradation leads to the production of microplastics (<5 mm, MPs) and nanoplastics ($<0.1 \mu m$, NPs). Plastic residues persist in the environment, especially in marine and aquatic ecosystems; it is estimated that more than 68% of these residues in the oceans originate from the fragmentation of waste that is not disposed of or improperly recycled. Not to be underestimated are the biodegradable plastics, which presence in the environment is increasing due to incomplete biodegradability and increasing use [9,10]. The ecotoxicological effects of MPs/NPs on marine phytoplanktons and zooplanktons, invertebrates and plants are well documented, while ingestion and accumulation from marine prey, leading to transfer to the predators, also occur [11,12]. The distribution of plastics is ubiquitous in the environment and includes atmosphere, soil and water; this likely represents a

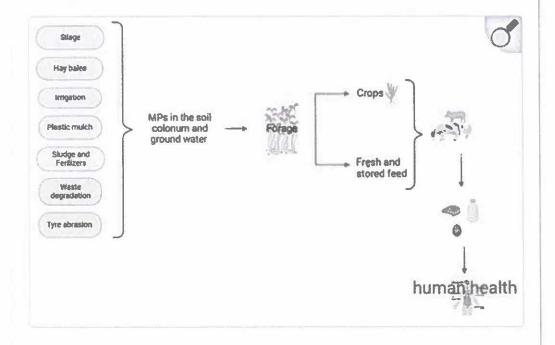
potential entry of microplastics into the food chain and, therefore, a concern for human and animal health. The results from a study of plastic particles on agricultural farmland in Germany are indicative of the importance of the soil cycle, as conventionally treated farmland had greater MP contamination compared to aquatic ecosystems [13]. The three main routes by which microplastics and nanoplastics can enter the human and mammalian body are the (1) inhalation of airborne plastic particles originating from synthetic textiles and polluted outdoor air, (2) ingestion of contaminated food and water supplies and (3) skin contact, with these plastic particles passing through the skin barrier [9]. In addition, due to their chemical-physical properties, these materials may facilitate the binding and transport of chemical contaminants (e.g., antibiotics and heavy metals) and microbial agents (e.g., bacteria), thus increasing their impact on the environment and on human beings and animal health [14]. Several types of toxic chemicals have been reported to be associated with MPs, most of which are either heavy metals (e.g., arsenic, zinc, copper, cadmium, lead and chromium); persistent organic pollutants (POPs); polychlorinated biphenyls (PCBs); polycyclic aromatic hydrocarbons (PAHs) and organic pesticides [15]. In addition, several microorganisms are able to bind to MPs, such as fungi, diatoms, algae and, most commonly, bacteria [14]. All microbial and chemical associations with MPs depend on various factors such as MP type and size, PH, salinity, plastic aging effect and polymer crystallinity [16]. Microplastics affect the evolution of microbial communities and increase gene exchanges, including antibiotic resistance genes (ARGs). There are no published findings on the abundance and diversity of antibiotic resistance genes in bacterial taxa in the marine plastic environment, although seawater has been identified as a global reservoir for ARGs and for metal resistance genes (MRGs) [17]. In recent decades, the emphasis has been placed on the effects of plasticizers and additives, while the direct effect of plastics has only recently been studied in more detail. Several studies have attempted to gain a better understanding of the mechanisms for the toxicity of MPs/NPs in mammalian cells, and there is evidence that these plastic particles induce damage such as oxidative stress, inflammation, apoptosis and dysregulation of the endocrine system. However, there is very little research on the amount, types and toxicities of nanoplastics and their effects on livestock health. In this review, therefore, a thorough look at the epidemiology of nanoplastics and microplastics in the food-producing animal production system, at the effects on the physiological system and degradation within the environment, quantities of toxicity, contamination and effects on animal health, with a focus on the reproduction, will be given.

2. Methodology

This review was prepared from findings after conducting a search using PubMed, Web of Science, ScienceDirect, Scopus, Google Scholar and Google with the following keywords and strings: "Microplastics", "Nanoplastics", "Reproductive system", "Health", "bovine", "cow", "cattle", "BPA", "Granulosa cells", "Steroid hormone", "Endocrine disrupting chemicals", "Exposure", "Migration" and combinations. The last accession to the online databases was conducted in January 2023. For information to be included in this review, the manuscripts had to meet the following criteria: to be related to mammals and to have a focus on the reproductive system and the disruption that plastic particles and additives may cause.

Additionally, references and citations from relevant publications were also manually screened to gather further information. The search results were then reviewed and the information analyzed, categorized and presented in sections to effectively address the scope of this review.

3. Resources and Distribution of Microplastics in Farms


Plastics are ubiquitous in many industrial and urban sectors,

including agricultural production, building and construction, transportation, packaging, electronics and automotive manufacturing. Additionally, plastics cause "visible pollution" through contributing to a large volume of total municipal solid waste and "invisible pollution", which poses a major threat to air, oceans, soil, livestock, wildlife and marine life [18]. A large amount of information on plastic particle contamination in the aquatic environment is available, but there is much less information regarding the transfer of these agents to soils. There are many pathways for plastic particles to enter a soil environment. These include the fragmentation of larger plastics such as agricultural plastic mulch film used in horticultural and agricultural processes. Another pathway includes atmospheric or airborne deposition, especially from uncovered or mismanaged landfills or urban litter. Plastics can also enter the soil through the irrigation of agricultural land with contaminated water or road runoff (e.g., tire abrasion). Other potential pathways include the use of plastic-coated fertilizers and the application of biosolids (e.g., sewage sludge from wastewater treatment plants) [19]. Biosolids and plastic mulch films are the most prevalent plastic contaminants in soil. In several countries, biosolids continue to be extensively applied to agricultural soils to improve their physical properties and maintain productivity [20]. Biosolids retain and accumulate as much as 99% of the plastic particles introduced via the influent, with an increasing risk of accumulation in soils after the repeated or longterm application of treated sludge. Generally, sewage sludge must undergo treatments such as aerobic or anaerobic digestion, composting, alkaline stabilization and thermal drying before land applications to reduce the pathogen load, control odors, reduce the vector attractiveness and inactivate heavy metals. Limited data are currently available on whether these treatment processes remove plastic particles from biosolids before land applications [19]. Instead, agricultural plastic mulch films are used to improve the efficiency of water retention, pesticide and nutrient use. Thermal insulation during the early planting or harvesting of crops may reduce soil erosion, suppress weed growth and reduce crop disease

burden [21]. Zhu et al. [22] reported that plastic films are usually thin, about 10– $30 \mu m$, which makes removal from the field after the growing season very difficult and recycling less feasible. For long-term applications, residual plastic mulch films in fields may slowly fragment into smaller particles through the actions of soil tillage, UV radiation, water and wind [23].

In addition to the risk of soil contamination from agricultural practices, the atmosphere is an important source for the plastic contamination of soil. Crude particles with a diameter of less than $2.5 \,\mu \text{m}$ enter the atmosphere through mechanical processes such as dust resulting from winds, thus increasing the risk of soil deposition. In addition to these previously described pathways, the use of manure from biowaste composting, tire abrasion, film coating of agronomic seeds, roadside littering (especially close to agricultural land) and illegal dumping of waste all contribute as sources of plastic particles in soils [19]. Concerning livestock farms, the risk of animals ingesting or simply coming into contact with microplastics cannot be excluded, as well as the presence and accumulation of these particles in animal products such as meat, milk and eggs (Figure 1) [24]. Plastic particles from contaminated soil can be ingested by animals and excreted in feces, leading to further dispersal of the pollutant [21]. As previously described in this manuscript, many soils are contaminated with microplastics as a result of both agronomic techniques and human negligence by leaving litter on fields where crops are later grown. MPs can be taken up through plant roots, especially nano-sized particles, and transported to edible parts of the plant [25]. In North America, 44,000 to 300,000 tons of MPs are deposited on agricultural soils annually [26], while an estimate of 63,000-430,000 tons has been described for European farmlands [27].

Figure 1.

Open in a new tab

A schematic diagram of the sources and fate of plastic particles in the soil. Silage covers, strings of the attached when baling hay, irrigation with water contaminated by MPs, plastic mulch, sludge and fertilizers, municipal waste degradation, tire abrasion and roadside litter affect the structure, fertility, nutrients and microbes of the soil. Land is used to produce feed for food-producing animals, which can be consumed fresh or stored. All of these sources increase the risk to human health through the ingestion of MPs from milk, meat and eggs.

In addition to the possibility that plants that are subsequently eaten by animals absorb plastic particles, we must also consider the techniques used to store food. Forage is the basis of the diet of dairy and beef cattle and is covered with a plastic film for preservation [28]. Hay bales are also wrapped with mesh or twine to maintain

their shape, both of which contribute to the use of plastic in feed preservation practices for food-producing animals. This practice, therefore, increases the risk of the migration of MPs or additives from feed packaging into the feed. An example is the reporting by Wang et al. [29], where the presence of bisphenol products (BPs) was observed in animal feed. The BPs are found in PP and PE packaging and can migrate into the solid feed of cows, with the risk of being transferred into their milk, as reported by Russo et al. [30].

The results from another study by Zhou et al. [31] indicated that nonpackaged fresh meats, such as pork, chicken, beef and mutton, were contaminated with BPs, thus suggesting that an additional contamination pathway other than migration from food packaging may be possible. Due to the highly lipophilic nature of BPs, bioaccumulation in animals and derived animal products (such as eggs, milk, and meat) may occur as a result of exposure to BPs in feed [32].

Considering both humans and also other livestock species such as pigs and poultry, there should be a focus on the presence of MPs in fishmeal and fish oil, which are widely used as a nutritional source in food-producing animal feed [15,33].

There is also a prevalence of MPs in drinking water [25]. Information, including a recent World Health Organization's (WHO) report on "Microplastic in drinking water" [34], indicates that there is not yet proof of harm and calls for more research to be conducted so there can be a greater understanding of the potential detrimental effects of microplastics in drinking water [35]. Kosuth et al. [36] tested tap water for human consumption from 159 global sources, and 81% contained microplastic particles less than 5 mm in diameter. Plastics in the soil threaten food safety and, therefore, the health of all organisms, and the environment may be affected in similar ways as the plastic pollution of the oceans.

4. Mammalian Exposure to Micro- and Nanoplastics

There are three primary routes by which microplastics and nanoplastics can enter the animal body: ingestion, inhalation and skin contact. The results from many studies that are subsequently addressed in this manuscript indicate that the amount of absorption after exposure is correlated with the size and concentration of the plastic particles, as well as the tissue and cell types.

4.1. Mammalian Exposure to Microplastics through Ingestion and Drinking Water

Animals ingest microplastics and nanoplastics because of their presence in different feeds and forages. Firstly, microplastics are ubiquitous in surface water, groundwater and wastewater [8,37], with different types of plastics such as fragments, fibers, films, etc. present in feed sources [38]. Animals and humans drink water contaminated with MPs, and microplastics are present in water used for the irrigation of fields [32,39]. In a previously mentioned article, considerable elaboration on how arable land is contaminated by MPs was provided. These nanoparticles can be absorbed via plant roots and transported through the xylem pathway to edible parts [40]. In cultivated plants, this may also mean that plastics can be transferred to the part of the plant that is intended for human or animal consumption and thus enter the food chain [41]. In some intensively cultivated areas of Europe, where ruminants graze after the harvesting of grains, the ingestion of plastic fragments occurs [21]. In developing countries, such as Ethiopia and India, however, the issue of plastic waste is even more widespread, because many animals, including livestock, are not maintained in confined areas and feed on garbage. When ingested, plastics slowly release chemicals in the rumen, which can enter the systemic bloodstream and contaminate milk and meat products and the food chain. These chemicals have adverse effects on human health [18,42].

Another risk is represented by the migration of additives or MPs from plastic packaging into solid animal feed. Wang et al. [29] confirmed this potential transfer route, but there are no reports investigating the effects of plastic particles after passage into the gastrointestinal tract of food-producing animals. One potential scenario is that these compounds remain in the intestinal lumen or migrate across the intestinal epithelia [9]. In fish and mice, there is some information on pathological manifestations associated with the absorption of nanoplastics across the gastrointestinal wall. In mice, ingested MPs/NPs were detected in the intestine, liver and kidneys. In the gut, the plastics induced alterations such as a reduction in mucosal secretion, intestinal barrier dysfunction, inflammation and microbiota dysbiosis. In the liver, however, these particles led to inflammation and to subsequent alterations in the blood lipid profile. Additionally, the absorption and accumulation of MPs led to various types of disorders in mice [35]. Based on these pathological outcomes in mice, it will be important to understand how the ingestion of nanoplastics may also affect food-producing animals.

Huerta Lwanga et al. [43] reported a possible trophic transfer of MPs from home gardens to earthworms and chickens. In chickens, MPs were recovered from the gizzard lumen and feces. In addition, it is noteworthy that there were different MP particle sizes transported through the digestive system, from the chicken crop (>5000 μ m) to the gizzard (<5000 μ m) and into feces (100 to $1000 \mu m$). It has been postulated that plastic ingestion led to a reduction in gizzard volume, which, in turn, decreased the foraging time and, hence, growth [44]. Zhang et al. [45], however, reported an estimate of MP intake ranging from 3 to 677 mg/week for domestic animals. Campanale et al. [2] reported that humans ingest about 80 g/day of microplastics through plants (fruits and vegetables) that accumulate MPs through plant uptake from polluted soil. There have been no specific studies in cattle, but these previous findings in humans suggest that there is another route of MP intake in herbivores [25].

4.2. Mammalian Exposure to Microplastics through Inhalation

The second most likely route of exposure of mammals to MPs/NPs is through inhalation. Minute particles of plastic may be suspended in the air; they mainly originate from synthetic textiles, but also, the inhalation of dried wastewater fertilizer or atmospheric fallout occurs [46]. Air contaminated with MPs/NPs comes into direct contact with the respiratory tract, affecting the mucus layer, periciliary layer, ciliated cells, non-ciliated secretory cells and basal cells. Considering the extremely fine structure of the alveolar surface, NPs may penetrate this tissue, thus entering the bloodstream and, subsequently, other body tissues [2]. In a cell culture of human alveolar epithelial cells, there were cytotoxic effects, oxidative stress responses and inflammatory responses against MPs. Generally, a rough estimate of human exposure to MPs by inhalation and dust ingestion is in the order of a few milligrams per day [47].

4.3. Mammalian Exposure to Microplastics through Skin Contact

Another entrance pathway of MPs/NPs could be transdermal, more specifically by contact or injection. Plastic particles can pass through the skin with the use of health and beauty products (only in humans) or contact with contaminated water. The point of access for MPs/NPs could be the stratum corneum, but they could also transfer via the sweat glands, skin wounds or hair follicles [9]. The outermost layer of the skin, the stratum corneum, forms a natural barrier, making it unlikely that molecules will penetrate this tissue layer if in an intact state. Alvarez-Roman et al. [48], performed a study on the penetration of polystyrene particles ranging from 20 to 200 nm in diameter into the stratum corneum of pigs. Many 20 nm polystyrene NPs concentrated in the hair follicles of these pigs, even though the particles were not transferred into the inner layers. Thus,

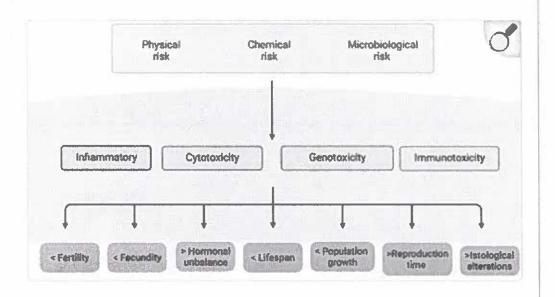
the results from this latter study indicate that there is only a superficial skin penetration of MPs/NPs. However, it cannot be excluded that these particles may enter the systemic circulation by means of plastic-based intravenous catheters, syringes and other drug delivery systems [49].

There has been elaboration on the current knowledge in the present article regarding the different entry routes of small plastic particles; however, the possible deposition and effects of these compounds in animals have yet to be resolved.

One thing is certain: once these compounds enter the body, there is not a ready clearance from the tissues. Rather, there is a presence of NPs in the blood and consequent transport via the blood circulation to all the tissues of the body [50].

5. Risks of Exposure to Microplastics and Nanoplastics in Food-Producing Animals

The risk posed by microplastics and nanoplastics to humans and animals is physical, chemical and microbiological nature. Physical risks are due to the small sizes of MPs/NPs that can cross biological barriers such as the skin, gut, hemato–encephalic, testicular and even placental tissues and cause direct damage. The chemical risks are due to the presence of persistent additives or contaminants that are potentially hazardous, while the microbiological risks are related to microorganisms adhering to the MP surface [51].


The exposure of animals to MPs results in inflammation; cytotoxicity (e.g., oxidative stress, cells damage, cell viability and altered membrane function); genotoxicity (through oxidative damage) and immunotoxicity [52]. Many of the toxic effects of MPs are intricately interconnected, as perturbation of one process may trigger a cascade of other toxicological responses [47]. The toxicity, translocation and accumulation of MPs depend on their size, shape, dose, surface

functionalization and charge, as well as hydrophobicity. There is convincing evidence that MPs accumulate in tissues. The results from many studies [8,9,35] are indicative that inflammation, oxidative stress, apoptosis, necrosis and immune responses occur because of the accumulation of MPs/NPs in human and animal tissues.

Particles < 100 μm in diameter can cross cell membranes, and particles < 20 µm can be efficiently translocated to various organs. Kannan and Vimalkumar [47] reported the accumulation of PVC particles in different species (e.g., in pigs) in the 1970s. There is also evidence that the majority of the larger ingested particles are excreted through feces. Smaller particles, however, can be absorbed systemically and may partially pass through tissue barriers. The blood-brain barrier, as well as the placental barrier, may be crossed by particles ranging from 0.1 to 10 μ m in diameter, while passage through the gastrointestinal tissue walls can occur for MPs as large as 150 μ m. Presumably, plastic particles smaller than 2.5 μ m can also circulate systemically in the organism by endocytosis. Ragusa et al. [53] analyzed six human placentae from Rome (Italy), which were evaluated using the Raman microspectroscopy technique; in four out of the six specimens, 12 MP fragments (5–10 μ m) were observed. Interestingly, all the MPs were pigmented, suggesting their origin from coatings, paints or personal care products. Furthermore, the particles were not only in the maternal side but also in the fetal side of the placenta and in the chorioamniotic membrane, thus highlighting a potential risk to the fetus. The authors hypothesized that the plastic particles in placentae could interfere with major cellular pathways that regulate immune system functions, growth factor signaling and several other systems. Wick et al. [54] also reported that polystyrene particles 240 nm in size can cross the placental barrier through diffusion or binding to cellular transport proteins. The accumulation of MPs primarily occurs in the liver, kidneys, gut [25], stomach, small intestine and mesenteric lymph nodes [49]. Fournier et al. [55] administered 0.02 μ m polystyrene particles to late-gestation female rats and observed that the transfer

of these particles to fetal tissues, including the liver, lungs, heart, kidneys and brain, occurred. Lou et al. [56] also reported that, after maternal exposure to polystyrene microplastics, the resulting offspring had various metabolic disorders, such as an alteration of the serum triglyceride and cholesterol concentrations. This is indicative of the potential risks of the microplastics to the reproductive tract, as well as to the fetus, in all species (Figure 2).

Figure 2.

Open in a new tab

Risks, effects and consequences of MPs/NPs on reproduction.

Additionally, the toxicological risk of microplastics and nanoplastics is increased due to the large amount of additives used in the production of these polymers, as emphasized in the introductory section of the manuscript. The most common and harmful additives are Bisphenol A (4,4'-(propane-2,2-diyl) diphenol) and phthalate esters, including DEHP (Bis(2-ethylhexyl) phthalate) and MEHP (mono- (2-ethylhexyl) phthalate) [9]. These chemicals are cytotoxic and can also behave as endocrine disruptors (EDCs); therefore,

alterations of the reproductive physiology of animals may occur as a result of the hormonal activity of these compounds [57]. In fact, EDCs are considered more harmful than MPs, since these compounds are responsible for the induction of cancer [25], mutations of DNA and toxic reproductive effects. Moreover, these chemicals are recalcitrant in the environment, can accumulate in the food chain and bodies and show harmful proprieties such as hormone disruptors [2]. It has been demonstrated that exposure of laboratory animals to MPs and their additives leads to the disruption of adipogenesis and lipid metabolism through the activation of peroxisome proliferation-activated receptors (PPARs: master regulators of adipogenesis), suggesting that MP exposure may be associated with the increasing prevalence of obesity globally [47].

Another issue related to microplastics is represented by the microbiological risk, because several microorganisms (MOs) such as fungi, diatoms, algae and bacteria are able to adhere to MPs [14]. This ability can be attributed to different electrostatic charges (negative charge of MOs and positive charge of MPs). MPs have a biofilm surface that protects and supports MOs (especially bacteria), promoting microbial multiplication and spreading to body tissues. Consequently, these bacteria absorbed by plastics are exposed to contaminants, such as antibiotics and metals; this phenomenon may also significantly contribute to modifying their antibiotic resistance through co-selection. Yang et al. [17] reported the multidrug resistance genes and multi-metal resistance genes were the main classes of genes detected in plastic-associated microbiota. The most important source of antibiotic resistance genes (ARGs) is hospital wastewater, which is treated in domestic wastewater treatment plants before being mixed with the receiving water; other sources include waste and runoff from animal husbandry [58]. Further studies, however, are needed to better understand the actions of MPs in the dissemination/spread of ARGs in different environments, such as water, soil and air.

In addition, persistent organic pollutants and polycyclic aromatic

hydrocarbons (PAHs) bind to MPs, which could lead to endocrine disruption and possibly cell death or mutagenesis [59]. Both phthalates and persistent organic pollutants have been found in the egg yolk of a sea turtle (*Caretta caretta*), resulting in altered embryonic development and in failure of egg hatching [60,61]. This illustrates how MPs and their additives, as well as the substances/MOs that may adhere of their surface, could be harmful both to animals and their offspring.

6. Effects of Microplastics and Nanoplastics on Reproduction

The exposure of MPs/NPs may trigger toxicity pathways, including the exacerbation of inflammation and oxidative stress (OS). After being absorbed, MPs/NPs may have actions locally or be transported to the bloodstream and, after the translocation, may reach all organs and tissues, including the gonads (see [12] for a detailed description of the translocation routes). The NPs can also accumulate in several reproductive tissues, thus inducing reproductive dysfunction(s). Reproductive alterations are mainly mediated by oxidative stress and are also associated with the upregulation of prooxidant mediators (reactive oxygen species, lipids and DNA oxidation); cell death; proinflammatory molecular pathways and cytokines and the inhibition of enzymatic and nonenzymatic antioxidant defense mechanisms.

In the female mouse reproductive system, the major microstructural abnormalities identified consisted of dilatation of the oviducts, presence of ovarian cysts and increased number of corpora lutea, decreased thickness of the granulosa layer in secondary follicles, reduced number of growing follicles, greater accumulation of ovarian collagen and fibronectin and apoptosis of granulosa cells [62]. Some of these effects have also been observed in rats, as indicated by lesser serum anti-Mullerian hormone concentrations as a marker for follicle reserves [63]. Furthermore, MPs/NPs increase

fibrotic processes in the ovaries and in granulosa cells by increasing the levels of ROS (reactive oxygen species) and MDA (malondialdehyde) and decreasing the activities of antioxidant enzymes, including SOD (superoxide dismutase), CAT (catalase) and GPx (glutathione peroxidase) [12]. The results from in vivo studies in rats indicated that the accumulation of ROS could lead to GC apoptosis and to follicular atresia, which may be the causal factor for infertility as a result of anovulation [63].

In mice and rat male reproductive systems, microplastics and nanoplastics detection in the testes was associated with multiple microstructural alterations, including testicular atrophy, incomplete spermatogenesis, disorganization or disruption, as well as with increased permeability of the blood–testis barrier [57]. Concerning the male gametes, greater amounts of sperm abnormalities have been observed in association with the presence of MPs and NPs; the major defects consisted of head and tail alterations, as well as acrosome loss. Additionally, other seminal characteristics were affected and resulted in a lesser sperm motility or immobility, apoptosis and an overall lower sperm count [62,64]. Deng et al. [65] reported an increase in SOD and MDA contents in testes when exposed to MPs, suggesting the involvement of oxidative stress pathways in the disruption of testicular functions.

Concerning embryonic development, it has been suggested [12] that MPs/NPs induce germ cell abnormalities by altering the fluidity of the membranes that are in contact with gametes, with the MPs not entering the embryo but adhering to the surface of the chorion and reducing the exchange of oxygen, followed by embryonic physiological disruption. Yin et al. [66], however, reported that NPs could be transported into the embryo and accumulate in the yolk sac, leading to alterations in nutrient absorption. All the mentioned studies referred to aquatic organisms.

The results from several studies in women indicate there is a presence of MPs in the fetal and maternal placenta and chorionic

membranes, which might be harmful for a pregnancy, because the placenta supports fetal development and provides an interface between the internal and external environment [12,53,54]. The results from other studies implicate polystyrene MPs as a cause of alterations in the sex ratio and weight of offspring in mice, as well as a dysfunction of the lipid and amino acid metabolisms; therefore, there is the potential for interfering with the physiological functions of future generations [62].

Microplastics and nanoplastics induce the proinflammatory and prooxidant processes, as well as the imbalance in reproductive hormone concentrations in male and female animals. Considering the inflammatory effectors, the plastic particles had effects in upregulating the abundance of TNF-a (tumor necrosis factor), interleukin IL-1ß, IL-6, IL-8 and the apoptotic factor caspase-3 [49,67]. The hormonal panel showed a consistent downregulation of T4 (testosterone), LH (luteinizing hormone), FSH (folliclestimulating hormone) and AMH (anti-Mullerian hormone) concentrations [57]. After exposure of mice to polystyrene MPs/NPs, the concentrations of FSH, LH and T4 decreased and estradiol level increased in the serum of males, while, in females, the observed hormone changes were the opposite [62].

Considered together, the results from all these reports highlighted the negative effects of plastics on reproductive tissues and functions, which may compromise the reproductive efficiency in humans and animals.

7. Effects of Bisphenol A and Other Additives on Fertility and Reproductive System on Livestock

In addition, to plastic particles, three plastic additives (Bisphenol A, phthalates and polychlorinated biphenyl 153) have been identified as causing infertility. These are defined as endocrine-disrupting chemicals (EDCs), as they are able to interfere with the endocrine

system, thus mimicking hormonal active agents. The trend for decreased the fertility rate and reproductive failure in farm animals may be a consequence of acute or long-term exposure to EDCs [68,69,70,71,72,73].

Bisphenol A (BPA was tested for estrogen activity in the early 1930s; it is a xenoestrogen with estrogen-mimicking, hormone-like properties. The BPA compound acts as an estrogen antagonist. It can bind to estrogen (ERs) and androgen (AR) receptors, thus interfering with steroidogenesis in Leydig cells, including 17a-hydroxylase/17,20 lyase and aromatase functions, interfering with LH receptor-ligand binding [74]. Increasing evidence that BPA has an effect on both female and male fertility is available. Concerns regarding BPA have led to the use of alternatives, one of which is Bisphenol S (BPS); the latter has been determined to be a "regrettable substitution", since BPS showed similar or even worse detrimental effects than BPA [75].

Another additive that has actions as an EDC and therefore interferes with fertility is DEHP (Bis(2-ethylhexyl) phthalate). It interacts with estrogen metabolism by suppressing the enzyme aromatase, which is necessary for the conversion of testosterone to estradiol and has an important role in brain sexual differentiation [76]. The DEHP compound may also induce abnormalities in the male reproductive tract.

Ding et al. [77] described the negative effects of BPA on female mouse fertility, which were due to impaired cytoskeletal dynamics in the oocyte, induction of oxidative stress, increased DNA damage and epigenetic alterations in oocytes. The BPA compounds can affect the follicular, ovarian and the hypothalamic systems, granulosa and theca cells and induce the formation of progressive proliferative lesions on the oviduct and uterus, such as atypical hyperplasia, stromal polyps and endometriosis. Lambs exposed to BPA had reduced follicular ovarian reserves with a lesser population of primordial follicles, an increase in antral atretic follicles, a greater

prevalence of follicles containing multiple oocytes and reduced ovarian weights [74].

Fujimoto et al. [78] observed an association between a greater concentration of BPA in the serum of women and decreased likelihood of mature oocytes. Saleh et al. [79] also reported that BPA increased apoptotic gene expression in bovine oocytes. Both BPA and BPS (such as BPA) disrupt oocytes-secreted proteins (GDF9 and CX37), damage the gap junctional intercellular communication of COCs (cumulus–oophore complexes) [80] and impair the prophase I-to-MII transition in oocytes [81]. In addition, BPS has effects on the relative abundance of maternal mRNA, while BPS exposure induced changes in the protein secretion, distribution of estrogen receptors α and β and of aromatase in oocytes [75].

Relatively greater concentrations of BPA were detected in the urine of infertile compared with fertile women and in those with polycystic ovary syndrome (PCOS), where an association between the BPA content and greater androgen concentrations were observed [82]. BPA has also been detected at different concentrations in the serum of pregnant and nonpregnant women, follicular fluid, fetal serum and amniotic fluid [83].

There was no BPA detected in the follicular fluid of pigs, but BPA alters the hyaluronic acid production and gene expression of cumulus cells and disrupts the spindle formation and meiosis in oocytes [75]. BPA has been found in cattle urine [84] and women's follicular fluid at a concentration of 2.4 ± 0.8 ng/mL, respectively [85].

Concerning the hypothalamic–pituitary–gonadal axis (HPGA), BPA interferes with a gonadotropin synthesis by reducing the relative abundance of "gonadotropin mRNA, GnRHr, and Nr5al, key components of gonadotropin synthesis" [86]. Xi et al. [87] reported that estrogen production by granulosa cells of mice is affected by

BPS through the disruption of HPGA, similar to the effects of BPA. Treatment with BPA resulted in an impaired reproductive capacity and delayed onset or even failure to express puberty [88]. In women undergoing in vitro fertilization, relatively greater urinary concentrations of BPA were correlated with a failure of embryo implantation; greater serum concentrations were then associated with the prevalence of abnormal embryos and premature parturition [89,90,91].

Additionally, the detection of BPA was associated with a reduced cleavage rate and development of embryos at the blastocyst stage and alteration in gene expression in cattle [80]. The results from several studies on rat pups produced by a dam exposed to BPA showed reduced birth weights, lower weights in males, especially before birth, and a positive correlation between maternal BPA and both weight/size of the offspring [92,93]. Other studies, such as Talpade et al. [73], have led to results indicating adverse effects of BPA in chickens (*Gallus domesticus*), such as increased embryo mortality and the malformation of reproductive organs.

Additionally, Gao et al. [94] observed a correlation between BPA and breast and ovarian cancers and endometrial carcinoma.

Phthalate esters are also active in the female reproductive system, with DEHP affecting ovarian function, which causes decreased serum estradiol concentrations, prolonged estrous cycles and failure of ovulation and cystic progression [6]. Maternal exposure to DEHP resulted in reproductive toxicity and led to modulation in the abundance of molecules that regulate uterine function in the following generation of rats [95]. The MEHP compound (monoethylhexyl phthalate), the active metabolite of DEHP, is assumed to be able to suppress aromatase in granulosa cells through the activation of PPARs (peroxisome proliferator-activated receptors). Then, MEHP probably inhibits the meiotic maturation of oocytes in cattle [96].

Inconsistent with these actions, BPA binds and has functions as an androgen receptor antagonist (AR) and alters the 17α-hydroxylase/17,20 lyase and aromatase expression and LH receptor–ligand binding, thus interfering with steroidogenesis in Leydig cells [97].

In 98% of men with infertility problems, there is a correlation between urinary BPA and sperm count and motility [98]. Additionally, BPA alters the energy metabolism and reduces sperm storage, sperm transit time and mitochondrial activity while increasing the apoptosis of Sertoli cells, the percentage of immature sperm and sperm DNA damage, thus determining the lesser semen quality [74,99,100]. These alterations have also been found in dogs, cats and goats, while the possibility of an increased prevalence of prostate cancer has been suggested [80].

As for hormones, relatively greater BPA concentrations are associated with a reduction in testosterone and LH, leading to hypogonadotropic hypogonadism, and are associated with a greater FSH: inhibin B ratio and lesser estradiol: testosterone ratio [100].

In some studies, there have been associations of BPA with sexual functions, erectile functions, ejaculation, cryptorchidism and congenital genital malformations (due to the differentiation of Wolffian structures) in males [74]. In some comparative studies, it was concluded that BPA causes abnormalities in meiosis, spindle fibers and congenital defects in mice, pigs, cattle and humans [80,101].

Among the phthalates that cause damage to the male reproductive system, DEHP has been reported to alter the structure of Leydig and Sertoli cells, to inhibit testicular functions, to cause atrophy of the seminiferous tubule and to decrease testes weight and sperm production. There is also an association between the presence of DEHP and shortened anogenital distance, as well as with suppressed

aromatase P450 enzyme expression (CYP19), which is the key factor for the conversion of androgens into estrogens [76], thus leading to masculinization of the brain.

The findings in all these studies emphasize that additives for the production of microplastics disrupt the reproductive tissue functions.

8. Conclusions and Future Perspectives

The environmental pollution caused by plastic is due to accumulation in the oceans, atmosphere and soil of several synthetic polymers used for various human motives. Due to water, air and vegetables, these compounds can have effects on animals, including humans, by affecting their health and wellbeing. An increasing body of evidence suggests that farm animals can ingest plastics in various amounts, depending on environmental contamination. Potentially, these tiny particles and the additives used to enhance the efficacy and appearance of these plastics can cause damage to tissues and cellular systems due to their ability to activate various cascades of tissue functions, thus leading to inflammation, cytotoxicity, genotoxicity and immune toxicity in cells and tissues. Reproduction is particularly affected by these pollutants, as many of these can induce endocrine disruption. The phenotypic effects of these pollutants, when there have been studies conducted both in vivo or in vitro, are varied due to impaired fertility and hormone imbalance. The negative effects of plastic pollution on animal reproductive efficiency and the health of food-producing animals are not easy to ascertain due to the variety of confounding effects (nutrition, metabolism, productive level, management, etc.). The concern for the plastic hazard in the trophic chain and subsequent risk for animal and human health is growing among consumers and farmers.

There remains the need to gain a better understanding of many of

the components related to the information on this topic. Priority must be given to conducting further in vitro or in vivo studies and to better elucidate cellular and whole-body effects. Verifying the presence of the substances discussed in this article in animal products such as meat, milk and eggs also represents an important aspect for consumer safety. The scientific community should also direct efforts toward the identification of the best organic matrix to assess animal exposure (blood, urine, feces, milk and other tissues) and to identify the gold standards for analytical methods in animal feed, animal organic materials and animal-derived food products.

Most importantly, there is a need for conscious behavior and for improved risk mitigation strategies through the reduction in exposure to substances that cause long-term harm to both humans and animals.

Author Contributions

Conceptualization, G.S. and M.M.; methodology, S.U.; validation, S.U., M.C., A.B. and F.C.P.; formal analysis, G.S. and M.M.; investigation, S.U., F.C.P., M.C. and A.B.; resources, G.S.; writing—original draft preparation, S.U.; writing—review and editing, G.S., M.C., A.B. and M.M.; visualization, G.S.; supervision, G.S. and M.M.; project administration, G.S. and funding acquisition, G.S. All authors have read and agreed to the published version of the manuscript.

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Not applicable.

Data Availability Statement

Not applicable.

Conflicts of Interest

The authors declare no conflict of interest.

Funding Statement

This research received no external funding.

Footnotes

Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

References

- 1. Thompson R.C., Swan S.H., Moore C.J., Vom Saal F.S. Our plastic age. Philos. Trans. R. Soc. B Biol. Sci. 2009;364:1973–1976. doi: 10.1098/rstb.2009.0054. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 2. Campanale C., Massarelli C., Savino I., Locaputo V., Uricchio V.F. A detailed review study on potential effects of microplastics and additives of concern on human health. Int. J. Environ. Res. Public Health. 2020;17:1212. doi: 10.3390/ijerph17041212. [DOI] [PMC free article]

[PubMed] [Google Scholar]

- 3. PlasticsEurope Plastics—The Facts 2021 An Analysis of European Plastics Production, Demand and Waste Data. [(accessed on 15 January 2023)]. Available online: https://plasticseurope.org/wp-content/uploads/2021/12/AF-Plastics-the-facts-2021_250122.pdf.
- 4. Geyer R., Jambeck J.R., Law K.L. Production, use, and fate of all plastics ever made. Sci. Adv. 2017;3:e1700782. doi: 10.1126/sciadv.1700782. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 5. Rochman C.M., Brookson C., Bikker J., Djuric N., Earn A., Bucci K., Athey S., Huntington A., McIlwraith H., Munno K., et al. Rethinking Microplastics as a Diverse Contaminant Suite. Environ. Toxicol. Chem. 2019;38:703–711. doi: 10.1002/etc.4371. [DOI] [PubMed] [Google Scholar]
- 6. Lovekamp-Swan T., Davis B.J. Mechanisms of Phthalate Ester Toxicity in the Female Reproductive System. Environ. Health Perspect. 2003;111:139–145. doi: 10.1289/ehp.5658.

 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 7. Huang M., Liu S., Fu L., Jiang X., Yang M. Bisphenol A and its analogues bisphenol S, bisphenol F and bisphenol AF induce oxidative stress and biomacromolecular damage in human granulosa KGN cells. Chemosphere. 2020;253:126707. doi: 10.1016/j.chemosphere.2020.126707. [DOI] [PubMed] [Google Scholar]
- 8. Hirt N., Body-Malapel M. Immunotoxicity and Intestinal Effects of Nano- and Microplastics: A Review of the Literature. Part. Fibre Toxicol. 2020;17:57. doi: 10.1186/s12989-020-00387-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 9. Shen M., Song B., Zeng G., Zhang Y., Huang W., Wen X.,

Tang W. Are biodegradable plastics a promising solution to solve the global plastic pollution? Environ. Pollut. 2020;263:114469. doi: 10.1016/j.envpol.2020.114469. [DOI] [PubMed] [Google Scholar]

- 10. Sussarellu R., Suquet M., Thomas Y., Lambert C., Fabioux C., Pernet M.E.J., Le Goïc N., Quillien V., Mingant C., Epelboin Y., et al. Oyster reproduction is affected by exposure to polystyrene microplastics. Proc. Natl. Acad. Sci. USA. 2016;113:2430–2435. doi: 10.1073/pnas.1519019113. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 11. Ferrante M.C., Monnolo A., Del Piano F., Raso G.M., Meli R. The Pressing Issue of Micro- and Nanoplastic Contamination: Profiling the Reproductive Alterations Mediated by Oxidative Stress. Antioxidants. 2022;11:193. doi: 10.3390/antiox11020193. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 12. Piehl S., Leibner A., Löder M.G.J., Dris R., Bogner C., Laforsch C. Identification and quantification of macro- and microplastics on an agricultural farmland. Sci. Rep. 2018;8:17950. doi: 10.1038/s41598-018-36172-y. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 13. Yee M.S.L., Hii L.W., Looi C.K., Lim W.M., Wong S.F., Kok Y.Y., Tan B.K., Wong C.Y., Leong C.O. Impact of Microplastics and Nanoplastics on Human Health. Nanomaterials.

 2021;11:496. doi: 10.3390/nano11020496. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 14. Mammo F.K., Amoah I.D., Gani K.M., Pillay L., Ratha S.K., Bux F., Kumari S. Microplastics in the environment: Interactions with microbes and chemical contaminants. Sci. Total Environ. 2020;743:140518. doi: 10.1016/j.scitotenv.2020.140518. [DOI] [PubMed] [Google Scholar]

- 15. Kumar R., Manna C., Padha S., Verma A., Sharma P., Dhar A., Ghosh A., Bhattacharya P. Micro(nano)plastics pollution and human health: How plastics can induce carcinogenesis to humans? Chemosphere. 2022;298:134267. doi: 10.1016/j.chemosphere.2022.134267. [DOI] [PubMed] [Google Scholar]
- 16. Wang F., Wong C.S., Chen D., Lu X., Wang F., Zeng E.Y. Interaction of toxic chemicals with microplastics: A critical review. Water Res. 2018;139:208–219. doi: 10.1016/j.watres.2018.04.003. [DOI] [PubMed] [Google Scholar]
- 17. Yang Y., Liu G., Song W., Ye C., Lin H., Li Z., Liu W. Plastics in the marine environment are reservoirs for antibiotic and metal resistance genes. Environ. Int. 2019;123:79–86. doi: 10.1016/j.envint.2018.11.061. [DOI] [PubMed] [Google Scholar]
- 18. Ramaswamy V., Rai Sharma H. Plastic bags-threat to environment and cattle health: A retrospective study from gondar city of Ethiopia. IIOAB J. 2011;2:7–12. [Google Scholar]
- 19. Okoffo E.D., O'Brien S., Ribeiro F., Burrows S.D., Toapanta T., Rauert C., O'Brien J.W., Tscharke B.J., Wang X., Thomas K.V. Plastic Particles in Soil: State of the Knowledge on Sources, Occurrence and Distribution, Analytical Methods and Ecological Impacts. Environ. Sci. Process. Impacts. 2021;23:240–274. doi: 10.1039/D0EM00312C. [DOI] [PubMed] [Google Scholar]
- 20. Okoffo E.D., O'Brien S., O'Brien J.W., Tscharke B.J., Thomas K.V. Wastewater Treatment Plants as a Source of Plastics in the Environment: A Review of Occurrence, Methods for Identification, Quantification and Fate. Environ. Sci. 2019;5:1908–1931. doi: 10.1039/C9EW00428A. [DOI]

[Google Scholar]

- 21. Beriot N., Peek J., Zornoza R., Geissen V., Huerta Lwanga E. Low density-microplastics detected in sheep faeces and soil: A case study from the intensive vegetable farming in Southeast Spain. Sci. Total Environ. 2021;755:142653. doi: 10.1016/j.scitotenv.2020.142653. [DOI] [PubMed] [Google Scholar]
- 22. Zhu F., Zhu C., Wang C., Gu C. Occurrence and Ecological Impacts of Microplastics in Soil Systems: A Review. Bull. Environ. Contam. Toxicol. 2019;102:741–749. doi: 10.1007/s00128-019-02623-z. [DOI] [PubMed] [Google Scholar]
- 23. Briassoulis D., Babou E., Hiskakis M., Kyrikou I. Analysis of long-term degradation behaviour of polyethylene mulching films with pro-oxidants under real cultivation and soil burial conditions. Environ. Sci. Pollut. Res. 2015;22:2584–2598. doi: 10.1007/s11356-014-3464-9. [DOI] [PubMed] [Google Scholar]
- 24. Da Costa Filho P.A., Andrey D., Eriksen B., Peixoto R.P., Carreres B.M., Ambühl M.E., Descarrega J.B., Dubascoux S., Zbinden P., Panchaud A., et al. Detection and characterization of small-sized microplastics ($\geq 5 \mu m$) in milk products. Sci. Rep. 2021;11:24046. doi: 10.1038/s41598-021-03458-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 25. Allouzi M.M.A., Tang D.Y.Y., Chew K.W., Rinklebe J., Bolan N., Allouzi S.M.A., Show P.L. Micro (nano) plastic pollution: The ecological influence on soil-plant system and human health. Sci. Total Environ. 2021;788:147815. doi: 10.1016/j.scitotenv.2021.147815. [DOI] [PubMed] [Google Scholar]
- 26. Banerjee A., Shelver W.L. Micro- and Nanoplastic Induced Cellular Toxicity in Mammals: A Review. Sci. Total Environ.

2021;755:142518. doi: 10.1016/j.scitotenv.2020.142518. [DOI] [PubMed] [Google Scholar]

- 27. Nizzetto L., Futter M., Langaas S. Are Agricultural Soils
 Dumps for Microplastics of Urban Origin? Environ. Sci.
 Technol. 2016;50:10777–10779. doi:
 10.1021/acs.est.6b04140. [DOI] [PubMed] [Google Scholar]
- 28. Ashbell G., Kipnis T., Titterton M., Hen Y., Azrieli A., Weinberg Z.G. Examination of a technology for silage making in plastic bags. Anim. Feed Sci. Technol. 2001;91:213–222. doi: 10.1016/S0377-8401(01)00239-5. [DOI] [Google Scholar]
- 29. Wang R., Huang Y., Dong S., Wang P., Su X. The occurrence of bisphenol compounds in animal feed plastic packaging and migration into feed. Chemosphere. 2021;265:129022. doi: 10.1016/j.chemosphere.2020.129022. [DOI] [PubMed] [Google Scholar]
- 30. Russo G., Barbato F., Cardone E., Fattore M., Albrizio S., Grumetto L. Bisphenol A and Bisphenol S release in milk under household conditions from baby bottles marketed in Italy. J. Environ. Sci. Health Part B Pestic. Food Contam. Agric. Wastes. 2018;53:116–120. doi: 10.1080/03601234.2017.1388662. [DOI] [PubMed] [Google Scholar]
- 31. Zhou J., Chen X.H., Pan S.D., Wang J.L., Zheng Y.B., Xu J.J., Zhao Y.G., Cai Z.X., Jin M.C. Contamination status of bisphenol A and its analogues (bisphenol S, F and B) in foodstuffs and the implications for dietary exposure on adult residents in Zhejiang Province. Food Chem. 2019;294:160–170. doi: 10.1016/j.foodchem.2019.05.022. [DOI] [PubMed] [Google Scholar]
- 32. Wang F., Wang B., Duan L., Zhang Y., Zhou Y., Sui Q., Xu

- D., Qu H., Yu G. Occurrence and distribution of microplastics in domestic, industrial, agricultural and aquacultural wastewater sources: A case study in Changzhou, China. Water Res. 2020;182:115956. doi: 10.1016/j.watres.2020.115956. [DOI] [PubMed] [Google Scholar]
- 33. Thiele C.J., Hudson M.D., Russell A.E., Saluveer M., Sidaoui-Haddad G. Microplastics in fish and fishmeal: An emerging environmental challenge? Sci. Rep. 2021;11:2045. doi: 10.1038/s41598-021-81499-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 34. World Health Organization . Microplastics in Drinking-Water. World Health Organization; Geneva, Switzerland: 2019. [Google Scholar]
- 35. Yong C.Q.Y., Valiyaveettil S., Tang B.L. Toxicity of Microplastics and Nanoplastics in Mammalian Systems. Int. J. Environ. Res. Public Health. 2020;17:1509. doi: 10.3390/ijerph17051509. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 36. Kosuth M., Mason S.A., Wattenberg E.V. Anthropogenic contamination of tap water, beer, and sea salt. PLoS ONE. 2018;13:e0194970. doi: 10.1371/journal.pone.0194970. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 37. Danopoulos E., Twiddy M., Rotchell J.M. Microplastic contamination of drinking water: A systematic review. PLoS ONE. 2020;15:e0236838. doi: 10.1371/journal.pone.0236838. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 38. Koelmans A.A., Mohamed Nor N.H., Hermsen E., Kooi M., Mintenig S.M., De France J. Microplastics in freshwaters and drinking water: Critical review and assessment of data quality. Water Res. 2019;155:410–422. doi: 10.1016/j.watres.2019.02.054. [DOI] [PMC free article]

[PubMed] [Google Scholar]

- 39. Zuccarello P., Ferrante M., Cristaldi A., Copat C., Grasso A., Sangregorio D., Fiore M., Oliveri Conti G. Exposure to microplastics (<10 µm) associated to plastic bottles mineral water consumption: The first quantitative study. Water Res. 2019;157:365–371. doi: 10.1016/j.watres.2019.03.091. [DOI] [PubMed] [Google Scholar]
- 40. Lian J., Wu J., Xiong H., Zeb A., Yang T., Su X., Su L., Liu W. Impact of polystyrene nanoplastics (PSNPs) on seed germination and seedling growth of wheat (Triticum aestivum L.) J. Hazard. Mater. 2020;385:121620. doi: 10.1016/j.jhazmat.2019.121620. [DOI] [PubMed] [Google Scholar]
- 41. Rillig M.C., Lehmann A., de Souza Machado A.A., Yang G. Microplastic Effects on Plants. New Phytol. 2019;223:1066–1070. doi: 10.1111/nph.15794. [DOI] [PubMed] [Google Scholar]
- 42. Priyanka M., Dey S. Ruminal impaction due to plastic materials-An increasing threat to ruminants and its impact on human health in developing countries. Vet. World. 2018;11:1307–1315. doi: 10.14202/vetworld.2018.1307-1315. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 43. Huerta Lwanga E., Mendoza Vega J., Ku Quej V., de los Angeles Chi J., Sanchez del Cid L., Chi C., Escalona Segura G., Gertsen H., Salánki T., van der Ploeg M., et al. Field evidence for transfer of plastic debris along a terrestrial food chain. Sci. Rep. 2017;7:14071. doi: 10.1038/s41598-017-14588-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 44. Ryan P.G. Effects of Ingested Plastic on Seabird Feeding: Evidence from Chickens. Mar. Pollut. Bull. 1988;19:125–128. doi: 10.1016/0025-326X(88)90708-4. [DOI] [Google

Scholar]

- 45. Zhang J., Wang L., Kannan K. Polyethylene Terephthalate and Polycarbonate Microplastics in Pet Food and Feces from the United States. Environ. Sci. Technol. 2019;53:12035–12042. doi: 10.1021/acs.est.9b03912. [DOI] [PubMed] [Google Scholar]
- 46. Lehner R., Weder C., Petri-Fink A., Rothen-Rutishauser B. Emergence of Nanoplastic in the Environment and Possible Impact on Human Health. Environ. Sci. Technol. 2019;53:1748–1765. doi: 10.1021/acs.est.8b05512. [DOI] [PubMed] [Google Scholar]
- 47. Kannan K., Vimalkumar K. A Review of Human Exposure to Microplastics and Insights Into Microplastics as Obesogens. Front. Endocrinol. 2021;12:724989. doi: 10.3389/fendo.2021.724989. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 48. Alvarez-Román R., Naik A., Kalia Y.N., Guy R.H., Fessi H. Skin penetration and distribution of polymeric nanoparticles. J. Control. Release. 2004;99:53–62. doi: 10.1016/j.jconrel.2004.06.015. [DOI] [PubMed] [Google Scholar]
- 49. Banerjee A., Shelver W.L. Micro- And Nanoplastic-Mediated Pathophysiological Changes in Rodents, Rabbits, and Chickens: A Review. J. Food Prot. 2021;84:1480–1495. doi: 10.4315/JFP-21-117. [DOI] [PubMed] [Google Scholar]
- 50. Leslie H.A., van Velzen M.J.M., Brandsma S.H., Vethaak A.D., Garcia-Vallejo J.J., Lamoree M.H. Discovery and quantification of plastic particle pollution in human blood. Environ. Int. 2022;163:107199. doi: 10.1016/j.envint.2022.107199. [DOI] [PubMed] [Google Scholar]

- 51. Hwang J., Choi D., Han S., Choi J., Hong J. An assessment of the toxicity of polypropylene microplastics in human derived cells. Sci. Total Environ. 2019;684:657–669. doi: 10.1016/j.scitotenv.2019.05.071. [DOI] [PubMed] [Google Scholar]
- 52. Poma A., Vecchiotti G., Colafarina S., Zarivi O., Aloisi M., Arrizza L., Chichiriccò G., Di Carlo P. In vitro genotoxicity of polystyrene nanoparticles on the human fibroblast hs27 cell line. Nanomaterials. 2019;9:1299. doi: 10.3390/nano9091299. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 53. Ragusa A., Svelato A., Santacroce C., Catalano P.,
 Notarstefano V., Carnevali O., Papa F., Rongioletti M.C.A.,
 Baiocco F., Draghi S., et al. Plasticenta: First evidence of
 microplastics in human placenta. Environ. Int.
 2021;146:106274. doi: 10.1016/j.envint.2020.106274. [DOI
] [PubMed] [Google Scholar]
- 54. Wick P., Malek A., Manser P., Meili D., Maeder-Althaus X., Diener L., Diener P.A., Zisch A., Krug H.F., Von Mandach U. Barrier capacity of human placenta for nanosized materials. Environ. Health Perspect. 2010;118:432–436. doi: 10.1289/ehp.0901200. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 55. Fournier S.B., D'Errico J.N., Adler D.S., Kollontzi S., Goedken M.J., Fabris L., Yurkow E.J., Stapleton P.A.

 Nanopolystyrene translocation and fetal deposition after acute lung exposure during late-stage pregnancy. Part. Fibre Toxicol. 2020;17:55. doi: 10.1186/s12989-020-00385-9. [DOI]

 [PMC free article] [PubMed] [Google Scholar]
- 56. Luo T., Zhang Y., Wang C., Wang X., Zhou J., Shen M., Zhao Y., Fu Z., Jin Y. Maternal exposure to different sizes of polystyrene microplastics during gestation causes metabolic

disorders in their offspring. Environ. Pollut. 2019;255:113122. doi: 10.1016/j.envpol.2019.113122. [DOI] [PubMed] [Google Scholar]

- 57. Marcelino R.C., Cardoso R.M., Domingues E.L.B.C., Gonçalves R.V., Lima G.D.A., Novaes R.D. The emerging risk of microplastics and nanoplastics on the microstructure and function of reproductive organs in mammals: A systematic review of preclinical evidence. Life Sci. 2022;295:120404. doi: 10.1016/j.lfs.2022.120404. [DOI] [PubMed] [Google Scholar]
- 58. Rodriguez-Mozaz S., Chamorro S., Marti E., Huerta B., Gros M., Sànchez-Melsió A., Borrego C.M., Barceló D., Balcázar J.L. Occurrence of antibiotics and antibiotic resistance genes in hospital and urban wastewaters and their impact on the receiving river. Water Res. 2015;69:234–242. doi: 10.1016/j.watres.2014.11.021. [DOI] [PubMed] [Google Scholar]
- 59. Grova N., Schroeder H., Olivier J.L., Turner J.D. Epigenetic and Neurological Impairments Associated with Early Life Exposure to Persistent Organic Pollutants. Int. J. Genomics. 2019;2019:2085496. doi: 10.1155/2019/2085496. [DOI]

 [PMC free article] [PubMed] [Google Scholar]
- 60. Alava J.J., Keller J.M., Kucklick J.R., Wyneken J., Crowder L., Scott G.I. Loggerhead sea turtle (Caretta caretta) egg yolk concentrations of persistent organic pollutants and lipid increase during the last stage of embryonic development. Sci. Total Environ. 2006;367:170–181. doi: 10.1016/j.scitotenv.2006.02.029. [DOI] [PubMed] [Google Scholar]
- 61. Savoca D., Arculeo M., Vecchioni L., Cambera I., Visconti G., Melfi R., Arizza V., Palumbo Piccionello A., Buscemi S., Pace A. Can phthalates move into the eggs of the loggerhead

sea turtle Caretta caretta? The case of the nests on the Linosa Island in the Mediterranean Sea. Mar. Pollut. Bull. 2021;168:112395. doi: 10.1016/j.marpolbul.2021.112395. [DOI] [PubMed] [Google Scholar]

- 62. Wei Z., Wang Y., Wang S., Xie J., Han Q., Chen M. Comparing the effects of polystyrene microplastics exposure on reproduction and fertility in male and female mice. Toxicology. 2022;465:153059. doi: 10.1016/j.tox.2021.153059. [DOI] [PubMed] [Google Scholar]
- 63. An R., Wang X., Yang L., Zhang J., Wang N., Xu F., Hou Y., Zhang H., Zhang L. Polystyrene microplastics cause granulosa cells apoptosis and fibrosis in ovary through oxidative stress in rats. Toxicology. 2021;449:152665. doi: 10.1016/j.tox.2020.152665. [DOI] [PubMed] [Google Scholar]
- 64. D'Angelo S., Meccariello R. Microplastics: A Threat for Male Fertility. Int. J. Environ. Res. Public Health. 2021;18:2392. doi: 10.3390/ijerph18052392. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 65. Deng Y., Yan Z., Shen R., Huang Y., Ren H., Zhang Y. Enhanced reproductive toxicities induced by phthalates contaminated microplastics in male mice (Mus musculus) J. Hazard. Mater. 2021;406:124644. doi: 10.1016/j.jhazmat.2020.124644. [DOI] [PubMed] [Google Scholar]
- 66. Yin K., Wang Y., Zhao H., Wang D., Guo M., Mu M., Liu Y., Nie X., Li B., Li J., et al. A comparative review of microplastics and nanoplastics: Toxicity hazards on digestive, reproductive and nervous system. Sci. Total Environ. 2021;774:145758. doi: 10.1016/j.scitotenv.2021.145758. [DOI] [Google Scholar]

- 67. Li B., Ding Y., Cheng X., Sheng D., Xu Z., Rong Q., Wu Y., Zhao H., Ji X., Zhang Y. Polyethylene microplastics affect the distribution of gut microbiota and inflammation development in mice. Chemosphere. 2020;244:125492. doi: 10.1016/j.chemosphere.2019.125492. [DOI] [PubMed] [Google Scholar]
- 68. Sweeney T. Is exposure to endocrine disrupting compounds during fetal/post-natal development affecting the reproductive potential of farm animals? Domest. Anim. Endocrinol. 2002;23:203–209. doi: 10.1016/S0739-7240(02)00157-1. [DOI] [PubMed] [Google Scholar]
- 69. Meijer G.A.L., Bree J., Wagenaar J.A., Spoelstra S.F. Sewerage Overflows Put Production and Fertility of Dairy Cows at Risk. J. Environ. Qual. 1999;28:1381–1383. doi: 10.2134/jeq1999.00472425002800040046x. [DOI] [Google Scholar]
- 70. Boerjan M.L., Freijnagel S., Rhind S.M., Meijer G.A.L. The potential reproductive effects of exposure of domestic ruminants to endocrine disrupting compounds. Anim. Sci. 2002;74:3–12. doi: 10.1017/S1357729800052164. [DOI] [Google Scholar]
- 71. Rhind S.M., Evans N.P., Bellingham M., Sharpe R.M., Cotinot C., Mandon-Pepin B., Loup B., Sinclair K.D., Lea R.G., Pocar P., et al. Effects of environmental pollutants on the reproduction and welfare of ruminants. Animal. 2010;4:1227–1239. doi: 10.1017/S1751731110000595. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 72. Gotardo A.T., Pavanelli E.L., Carvalho H.F., Lemes K.M., Arruda R.P., Kempinas W.G., Górniak S.L. Endocrine disrupter action in ruminants: A study of the effects of Ipomoea carnea in adult male goats. Small Rumin. Res. 2014;119:81–87. doi: 10.1016/j.smallrumres.2014.02.003. [DOI] [Google Scholar

- 73. Talpade J., Shrman K., Sharma R.K., Gutham V., Singh R.P., Meena N.S. Bisphenol a: An Endocrine Disruptor. J. Entomol. Zool. Stud. 2018;6:394–397. [Google Scholar]
- 74. Matuszczak E., Komarowska M.D., Debek W.,
 Hermanowicz A. The Impact of Bisphenol A on Fertility,
 Reproductive System, and Development: A Review of the
 Literature. Int. J. Endocrinol. 2019;2019:4068717. doi:
 10.1155/2019/4068717. [DOI] [PMC free article]
 [PubMed] [Google Scholar]
- 75. Žalmanová T., Hošková K., Nevoral J., Adámková K., Kott T., Šulc M., Kotíková Z., Prokešová Š., Jílek F., Králíčková M., et al. Bisphenol S negatively affects the meotic maturation of pig oocytes. Sci. Rep. 2017;7:485. doi: 10.1038/s41598-017-00570-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 76. Andrade A.J.M., Grande S.W., Talsness C.E., Grote K., Chahoud I. A dose–response study following in utero and lactational exposure to di-(2-ethylhexyl)-phthalate (DEHP): Non-monotonic dose–response and low dose effects on rat brain aromatase activity. Toxicology. 2006;227:185–192. doi: 10.1016/j.tox.2006.07.022. [DOI] [PubMed] [Google Scholar]
- 77. Ding Z.M., Jiao X.F., Wu D., Zhang J.Y., Chen E., Wang Y.S., Huang C.J., Zhang S.X., Li X., Huo L.J. Bisphenol AF negatively affects oocyte maturation of mouse in vitro through increasing oxidative stress and DNA damage. Chem. Biol. Interact. 2017;278:222–229. doi: 10.1016/j.cbi.2017.10.030. [DOI] [PubMed] [Google Scholar]
- 78. Fujimoto V.Y., Kim D., Vom Saal F.S., Lamb J.D., Taylor J.A., Bloom M.S. Serum unconjugated bisphenol A concentrations in women may adversely influence oocyte

quality during in vitro fertilization. Fertil. Steril. 2011;95:1816–1819. doi: 10.1016/j.fertnstert.2010.11.008. [DOI] [PubMed] [Google Scholar]

79. Saleh A., Favetta L. 159 Effect of bisphenol A and bisphenol S on AMH and AMHR mRNA expression during in vitro bovine oocyte maturation and early embryo development. Reprod. Fertil. Dev. 2019;31:204. doi: 10.1071/RDv31n1Ab159. [DOI] [Google Scholar]

80. Nandinee D., Mishra G., Shukla A., Soni N.L., Sharma P. Bisphenol A and cattle fertility. Pharma Innov. 2021;10:524–528. doi: 10.22271/tpi.2021.v10.i8Sh.7340. [DOI] [Google Scholar]

81. Acuña-Hernández D.G., Arreola-Mendoza L., Santacruz-Márquez R., García-Zepeda S.P., Parra-Forero L.Y., Olivares-Reyes J.A., Hernández-Ochoa I. Bisphenol A alters oocyte maturation by prematurely closing gap junctions in the cumulus cell-oocyte complex. Toxicol. Appl. Pharmacol. 2018;344:13–22. doi: 10.1016/j.taap.2018.02.011. [DOI] [PubMed] [Google Scholar]

82. Kandaraki E., Chatzigeorgiou A., Livadas S., Palioura E., Economou E, Koutsilieris M., Palimeri S., Panidis D., Diamanti-Kandarakis E. Endocrine disruptors and Polycystic Ovary Syndrome (PCOS): Elevated serum levels of bisphenol A in women with PCOS. J. Clin. Endocrinol. Metab. 2011;96:E480–E484. doi: 10.1210/jc.2010-1658. [DOI] [PubMed] [Google Scholar]

83. Ikezuki Y., Tsutsumi O., Takai Y., Kamei Y., Taketani Y. Determination of bisphenol A concentrations in human biological fluids reveals significant early prenatal exposure. Hum. Reprod. 2002;17:2839–2841. doi: 10.1093/humrep/17.11.2839. [DOI] [PubMed] [Google Scholar]

84. Zhang H., Shi J., Liu X., Zhan X., Chen Q. Occurrence and removal of free estrogens, conjugated estrogens, and bisphenol A in manure treatment facilities in East China. Water Res. 2014;58:248–257. doi: 10.1016/j.watres.2014.03.074. [DOI] [PubMed] [Google Scholar]

85. Mansur A., Adir M., Yerushalmi G., Hourvitz A., Gitman H., Yung Y., Orvieto R., Machtinger R. Does BPA alter steroid hormone synthesis in human granulosa cells in vitro? Hum. Reprod. 2016;31:1562–1569. doi: 10.1093/humrep/dew088. [DOI] [PubMed] [Google Scholar]

86. Brannick K.E., Craig Z.R., Himes A.D., Peretz J.R., Wang W., Flaws J.A., Raetzman L.T. Prenatal exposure to low doses of bisphenol a increases pituitary proliferation and gonadotroph number in female mice offspring at birth. Biol. Reprod. 2012;87:1–10. doi: 10.1095/biolreprod.112.100636. [DOI] [PMC free article] [PubMed] [Google Scholar]

87. Xi W., Lee C.K.F., Yeung W.S.B., Giesy J.P., Wong M.H., Zhang X., Hecker M., Wong C.K.C. Effect of perinatal and postnatal bisphenol A exposure to the regulatory circuits at the hypothalamus–pituitary–gonadal axis of CD-1 mice. Reprod. Toxicol. 2011;31:409–417. doi: 10.1016/j.reprotox.2010.12.002. [DOI] [PubMed] [Google Scholar]

88. Huo X., Chen D., He Y., Zhu W., Zhou W., Zhang J. Bisphenol-A and Female Infertility: A Possible Role of Gene-Environment Interactions. Int. J. Environ. Res. Public Health. 2015;12:11101–11116. doi: 10.3390/ijerph120911101. [DOI] [PMC free article] [PubMed] [Google Scholar]

89. Ehrlich S., Williams P.L., Missmer S.A., Flaws J.A., Berry K.F., Calafat A.M., Ye X., Petrozza J.C., Wright D., Hauser R. Urinary Bisphenol A Concentrations and Implantation Failure among Women Undergoing in Vitro Fertilization. Environ.

Health Perspect. 2012;120:978–983. doi: 10.1289/ehp.1104307. [DOI] [PMC free article] [PubMed] [Google Scholar]

- 90. Sugiura-Ogasawara M., Ozaki Y., Sonta S., Makino T., Suzumori K. Exposure to bisphenol A is associated with recurrent miscarriage. Hum. Reprod. 2005;20:2325–2329. doi: 10.1093/humrep/deh888. [DOI] [PubMed] [Google Scholar]
- 91. Cantonwine D., Meeker J.D., Hu H., Sánchez B.N., Lamadrid-Figueroa H., Mercado-García A., Fortenberry G.Z., Calafat A.M., Téllez-Rojo M.M. Bisphenol a exposure in Mexico City and risk of prematurity: A pilot nested case control study. Environ. Health A Glob. Access Sci. Source. 2010;9:62. doi: 10.1186/1476-069X-9-62. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 92. Ehrlich S., Williams P.L., Missmer S.A., Flaws J.A., Ye X., Calafat A.M., Petrozza J.C., Wright D., Hauser R. Urinary bisphenol A concentrations and early reproductive health outcomes among women undergoing IVF. Hum. Reprod. 2012;27:3583–3592. doi: 10.1093/humrep/des328. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 93. Chou W.C., Chen J.L., Lin C.F., Chen Y.C., Shih F.C., Chuang C.Y. Biomonitoring of bisphenol A concentrations in maternal and umbilical cord blood in regard to birth outcomes and adipokine expression: A birth cohort study in Taiwan. Environ. Health A Glob. Access Sci. Source. 2011;10:94. doi: 10.1186/1476-069X-10-94. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 94. Gao H., Yang B.J., Li N., Feng L.M., Shi X.Y., Zhao W.H., Liu S.J. Bisphenol A and hormone-associated cancers: Current progress and perspectives. Medicine. 2015;94:e211. doi: 10.1097/MD.0000000000000011. [DOI] [PMC free article]

[PubMed] [Google Scholar]

- 95. Shanmugam D.A.S., Dhatchanamurthy S., Leela K.A., Bhaskaran R.S. Maternal exposure to di(2-ethylhexyl) phthalate (DEHP) causes multigenerational adverse effects on the uterus of F1 and F2 offspring rats. Reprod. Toxicol. 2023;115:17–28. doi: 10.1016/j.reprotox.2022.11.006. [DOI] [PubMed] [Google Scholar]
- 96. Grossman D., Kalo D., Gendelman M., Roth Z. Effect of di-(2-ethylhexyl) phthalate and mono-(2-ethylhexyl) phthalate on in vitro developmental competence of bovine oocytes. Cell Biol. Toxicol. 2012;28:383–396. doi: 10.1007/s10565-012-9230-1. [DOI] [PubMed] [Google Scholar]
- 97. Hejmej A., Kotula-Balak M., Bilinsk B. Steroids—Clinical Aspect. InTech Europe; Rijeka, Croatia: 2011. Antiandrogenic and Estrogenic Compounds: Effect on Development and Function of Male Reproductive System. [DOI] [Google Scholar]
- 98. Meeker J.D., Yang T., Ye X., Calafat A.M., Hauser R. Urinary concentrations of parabens and serum hormone levels, semen quality parameters, and sperm DNA damage. Environ. Health Perspect. 2011;119:252–257. doi: 10.1289/ehp.1002238. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 99. Knez J., Kranvogl R., Breznik B.P., Vončina E., Vlaisavljević V. Are urinary bisphenol A levels in men related to semen quality and embryo development after medically assisted reproduction? Fertil. Steril. 2014;101:215–221.e5. doi: 10.1016/j.fertnstert.2013.09.030. [DOI] [PubMed] [Google Scholar]
- 100. Meeker J.D., Calafat A.M., Hauser R. Urinary bisphenol A concentrations in relation to serum thyroid and reproductive hormone levels in men from an infertility clinic. Environ. Sci.

Technol. 2010;44:1458–1463. doi: 10.1021/es9028292. [DOI] [PMC free article] [PubMed] [Google Scholar]

101. Wang T., Han J., Duan X., Xiong B., Cui X.S., Kim N.H., Liu H.L., Sun S.C. The Toxic Effects and Possible Mechanisms of Bisphenol A on Oocyte Maturation of Porcine in Vitro. Oncotarget. 2016;7:32554–32565. doi: 10.18632/oncotarget.8689. [DOI] [PMC free article] [PubMed] [Google Scholar]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Data Availability Statement

Not applicable.

Articles from Animals: an Open Access Journal from MDPI are provided here courtesy of **Multidisciplinary Digital Publishing**Institute (MDPI)